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1. INTRODUCTION 

A partnership is characterized by joint ownership and by sharing of the 
final output among the partners. The early literature on partnerships 
(Alchian and Demsetz [l], Holmstrijm [9], Radner et al. [12]) has 
argued that partnerships are inefficient forms of organization because the 
partners cannot solve their moral hazard problem. In contrast, recent 
results (Williams and Radner [14], Legros [lo], Matsushima [ll]) 
challenge this conclusion and prove that there exist nontrivial environ- 
ments in which partnerships are efficient: moral hazard does not always 
conflict with effkiency when there is joint production. This paper is in the 
latter tradition. We analyze the efficiency properties of a partnership when 
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the output is stochastic and when side-payments are allowed and we are 
able to give the necessary and sulhcient condition for sustaining efficiency 
by balanced transfer rules. 

The basic model is the following. Utilities are assumed to be fully trans- 
ferable. The players simultaneously choose actions that are not verifiable. 
These actions generate an output, possibly a stochastic variable, whose 
realization becomes public information. After the realization of the output, 
each partner receives a monetary transfer following a previously agreed 
transfer rule. Williams and Radner [14] is the first paper to argue that 
when the output is stochastic it might be possible to attain the first best. 
They give sufficient conditions for this to happen. However, their sufficient 
conditions seem to be quite strong and it is somehow difficult to interpret 
them. When the output is nonstochastic, Legros [lo] presents a necessary 
and sufficient condition for attaining efficiency. More importantly, a type of 
“static folk theorem” is proved in that work: for any positive E, s-efficiency 
can be sustained in mixed strategies. In a stochastic environment, 
Matsushima [11] gives a necessary and sufficient condition for the 
existence of a special class of transfer rules, called “penalty rules,” that 
sustain efficiency. We provide in Section 4 of this paper a necessary and 
sufficient condition for attaining efficiency when the output is stochastic 
under the assumption that the action spaces are finite. The interpretation 
of this condition is intuitive and is similar in spirit to Legros [lo] and 
Matsushima [ 111. 

We do not restrict the set of transfer rules that the partners can choose 
from. It follows that a transfer rule that sustains efficiency might require a 
player to pay a large amount to the other players for some realizations of 
the output. In Section 5, we introduce bankruptcy constraints and we 
impose that the share of each partner is bounded below. The liability of a 
partner is the maximum sum that she can be asked to pay. The average 
liability in the partnership is equal to the ratio of the total liability (the 
sum of the individual liabilities) to the number of partners. We show that 
only the average liability matters for the existence of a sharing rule that 
implements the first best subject to limited liability constraints. It is 
necessary and sufficient that this average liability be greater than a certain 
index. This index expresses the likelihood of deviations in the partnership 
and is equal to the ratio of the average variation in expected utility levels 
of the partners to a measure of the closeness of deviations. We formalize in 
Section 3 this measure of closeness of strategies. 

In Section 6, we define a transfer rule to be neutral if the expected (with 
respect to the efficient probability distribution) transfer to each partner is 
zero (this corresponds to the expected budget balanced condition of 
d’Aspremont and Gerard-Varet [3]). It is natural to require neutrality 
since with neutral transfer rules, we have implementation of the vector of 
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efficient actions and of the vector of expected utilities at the efficient 
actions. The implementation of the vector of utility levels is relevant when 
the utility levels are the outcome of some ex-ante bargaining or correspond 
to some concept of fairness. If balanced transfer rules that sustain efficiency 
exist, then there always exist neutral transfer rules that sustain efficiency. 
However, with limited liability, it can be the case that no neutral transfer 
rule exists, even if there-exist balanced transfer rules that sustain efficiency 
and that are consistent with limited liability. We give a necessary and a suf- 
ficient condition for the existence of a neutral transfer rule with limited 
liability. When neutrality and limited liability are jointly imposed, the par- 
tition of the total liability among the partners is crucial for the existence of 
balanced transfer rules. 

When individual rationality-a participation constraint-is imposed in 
conjunction with limited liability, two facts matter for the existence of a 
solution to the partnership problem: the relative liability levels and the first 
best opportunity costs (i.e., the difference between the first best and the 
reservation utility levels of the partners). If the first best opportunity costs 
are positive for all the partners, then neutrality and limited liability imply 
individual rationality and limited liability; otherwise, neutral transfer rules 
can fail to be individually rational. 

The rest of the paper is organized as follows. We present the model in 
the next section. In Section 3, we introduce a measure of closeness of 
strategies that is related to an “extended metric” on the space of probability 
measures over the set of output levels. In Section 4, we characterize the 
environments for which there exist balanced transfer rules that sustain 
efficiency. We study in Section 5 the question of limited liability. We restrict 
in Sections 6 and 7 the transfer rules to be neutral and individually rational 
respectively and we derive the corresponding conditions for the sustain- 
ability of efficiency under these additional restrictions. We present an 
example in Section 8 and we conclude in Section 9. 

2. THE MODEL 

The model that we consider in this paper is the following. There is a 
finite set N= { 1, . . . . n} of players (or partners) and each partner i can take 
an action in the finite set Ai = { ai( 1 ), . . . . ai(T The joint actions of the 
partners induce a stochastic output whose realizations lie in the finite set 
sz= {w,, . . . . VV,}. Actions and outputs can be multidimensional. (For 
instance, an output w  can be defined in terms of quantity and quality.) For 
each vector of joint actions a E A = XieN Ai, there exists a probability 
distribution over the set G! of possible outputs. n(w; a) is the probability 
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that w  is realized when the vector of joint actions is a. ~[a] denotes 
the vector (rr(w,; a), . . . . rc(w,; a)). rc[a] satisfies 

VWEQ, VaEA, 71(w; a) 2 0, 

We suppose that the partners have quasi-linear utility functions, i.e., side 
payments are allowed. If partner i receives an amount of money of m while 
output w  is realized and while the vector of joint actions is Q, her utility will 
be m + ui(w, a).’ Let U,(a) = C,,,ER n(w; a) .ui(w, a) be the (expected) 
direct utility of player i when the vector of joint actions is a. Quasi-linear 
utility functions are used extensively in the public economics and in the 
incentive literatures and have the nice property of freeing the analysis of 
income effects (e.g., Groves [7], Green and Laffont [8]). 

A pure strategy for player i is a choice of actions ai in Ai. A mixed 
strategy for player i is a probability distribution ai over the set of actions. 
Let Mi be the set of possible mixed strategies for player i and let M be 
the Cartesian product Xi Mi. Then Vcri~ M,, V~,E Ai, ~~(a,) 2 0 and 
c &EA, ~,(a,) = 1. We will use the following notation: 

Amj= )( Aj. 
i#i 

Vu E A, Vb, E Ai, a\& f (a _ i, hi). 

Vae A, VctieMi, ?r(w; a\a,) = 1 Mi(iii). n(w; a\ci,), 
l?,E A, 

A transfer rule is a function t: Q + [w”, i.e., t(w) is an n-vector 

(t1(w), AA.9 t,(w)), where t,(w) is the transfer (possibly negative) to partner 
i if the output w  is realized. A transfer rule is said to be balanced if 

VWEQ, iFN t,(w) = 0. 

It is possible to identify the set of budget balanced transfer rules with the 
set of maps from 52 to I?-‘. In this case, the transfer to partner n if output 
w  is observed is -Ci+n t,(w). 

r A more general form of quasi-linear utility function for partner i is ci. m + ui(w, a), where 
ci is a positive constant. We suppose here that ci= 1 for each partner i. It is clear that the 
efficient vector of actions depends on the c;s. Nevertheless, incentive compatibility is 
preserved when partner i’s utility function is divided by ci. Consequently, the results of this 
paper can be generalized to the more general utility functions. 
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The expected utility of player i when the vector of joint actions is a and 
the transfer rule is t is 

EU,(a, t) = 1 t,(w). 7L(w; a) + U,(a). 
IV E r2 

A vector of joint (pure) strategies a is a Nash equilibrium of the game 
induced by the transfer rule t if for every i E N and every cli E Mi, 

EUi(U, t) 2 EU,(a\a,, t). 

A transfer rule t is said to sustain a vector of joint strategies a if a is a 
Nash equilibrium in the game induced by t. 

By finiteness of the sets of actions and of output levels, there exists a 
vector of joint actions a* such that 

a* E ArfGyax c U,(a). 
itN 

Such a vector of joint actions is said to be efficient. The reader will note 
that the sum of utilities is the only efficiency criterion when the utility is 
transferable. 

The partnership’s problem is to find a balanced transfer rule t such that 
a* is a pure strategy Nash equilibrium of the game with strategy spaces 
{Ai} and with payoff functions {EUi(a, t)}. The partnership problem has 
a solution t if the following incentive compatibility conditions are satisfied: 

ViE N, VU,EA~, EU,(a*\a,, t) < EUJa*, t). 

3. A MEASURE OF CLOSENESS OF STRATEGIES 

For the purpose of sustaining a *, the physical proximity of the strategies 
is irrelevant; what matters is the proximity of the probability measures on 
!2 induced by the strategies.2 For instance, if for all a, rc[a] = rc, then for 
any two profiles of strategies c1 and 4, n[a] =rr[oi], i.e., while the two 
strategy profiles can be far apart (e.g., with respect to the Euclidian dis- 
tance on the space M) they induce the same probability measure on Sz. In 
this respect, they have the same influence on the expected transfers of the 
players. 

2 This idea is not new. For instance, Fudenberg and Levine [S] propose a utility based 
metric that generalizes Wald’s [ 131 concept of “intrinsic distance.” Our measure of distance 
between strategies is based on the distributions over outputs that are generated by the 
strategies; it cannot be based on the utility functions because the transfer rule (that determines 
the utility functions) is a variable of the model. 
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This section develops a measure of closeness of strategies that is based 
on this observation. This section is technical and can be ignored in a 
first reading. Let d(sZ) be the set of probability measures on s2. I.e., 
A(Q)= {q:Q-+ Ilo, 11 ILR q(w) = l}. We define an operator on d(sZ) 
as follows. For any subset Q of d(sZ), let 

d(Q) measures the distance between the elements of Q. We show in the 
following lemma that d is a generalization of the concept of metric and that 
d provides a metric on d(a) when d is restricted to subsets of d(sZ) having 
only two elements. 

Remark. We will see in Lemma 1 that d(Q) = 0 if, and only if, Q is 
empty or is a singleton. It can be showed that d(Q) is maximum, i.e., is 
equal to one if, and only if, the intersection of the closure of Q with each 
face F, = {q E 4(G) 1 q(w) = 0} of d(sZ), where w  E 52, is nonempty. Indeed, 
in this case for each w  ECU there exists a sequence .(q“} c Q such 
that lim,,, qk(w) =O. In particular, d(A(sZ))= 1, and if aA is the 
boundary of the simplex, d(aA(l2)) = 1. Let &2= (0, l}, and let 
Q = {U/n, 1 - l/ n )I n E Z + \ (0) }; then d(Q) = 1 since the extreme points 
(0, 1) and (1,0) belong to the closure of Q (note that (0, 1) does not 
belong to Q). If the closure of Q does not intersect some face FN,, then d(Q) 
is strictly between 0 and 1. For instance, if Sz = (0, l}, Q” = {(i, i), (f, f), 
(i, b)}, Q’ = {(f, $h (3, iI}, then d!Q”) = 4Q’ ) = $. 

LEMMA 1. The operator d has the following properties. 

(i) d(Q) 30for any subset Q of A(a). 

(ii) [d(Q) = 0] o [I Q 1 = l] for any nonempty subset Q of A(Q). 

(iii) d(Q u T) + d( Tu V) 3 d(Q u V) for any three subsets Q, T and 
v of A(Q). 

(iv) Let Vq, q’ E A(Q), $4, q’) E d( {q, 4’)). Then a is a metric for the 
space A(sZ). 

(v) [QcT]*[d(Q)<d(T)] for any subsets Q and Tof A(Q). 

ProoJ: See the Appendix. 1 

It is now possible to propose a measure p of closeness of strategies. 
Recall that Mi is the set of mixed strategies for player i and that 
M=Xi,NMi. Let CI=(CY~, . . . . a,) E M be a vector of strategies. We consider 
the probability measure 7~ and the vector of actions a*. Each strategy cli 
generates a probability distribution n[a*\ai]. For any q E [0, 11, we define 
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the strategies tli to be q-close with respect to (n, a*) if the d-distance 
between the elements of the set {n[a*\cc,] 1 ie N} is equal to rl. Hence, our 
measure of closeness of strategies is given by the operator p; 

VccEM, p(a)=d({7c[o;u*\ai]liEN)). (1) 

It is possible to interpret p(a) as a measure of closeness of strategies 
because the underlying operator d that defines p has properties that 
generalize those of a metric. By definition of d, it is straightforward that (1) 
is equivalent to 

Vo!EA4, p(a) = 1 - C min ~c(w; a*\~,). 
n,ED ieN 

4. CHARACTERIZATION 

For each vector of mixed strategies a, we can define an index j?(a) by 

p(a),Ci~~ (ui(Q*\ai)- ui(“*)) 

n . p(a) 
if p(a)#O 

or CicN (U,(U*\ai) - Ui(U*)) f”. 

=o otherwise.3 

This index is the average gain from deviations CieN (U,(u*\a,) - U,(u*))/n 
normalized by the measure of closeness of the deviations. We want to 
interpret fi as a measure of the likelihood of a deviation. In short, the 
higher is /?, the higher are the incentives for deviations. The first result of 
this paper states that there exists a solution to the partnership problem if, 
and only if, j?(a) is’ bounded above by a finite nonnegative number. Below, 
/?* denotes the supremum of the set {/?(a)laeM}. 

THEOREM 2. There exists a bounded balanced transfer rule t that sustains 
a* if, and only if, p* < + co. 

Proof. See the Appendix. 1 

This condition is a generalization of the characterization by Legros [lo] 
in the deterministic case. We would like to suggest an intuition for the 
necessity of this result. Two cases are possible for a given deviation. 
Suppose first that the average gain from a deviation a is nonpositive. 
In this case, there exists a vector s such that xi, N si = 0 and such that for 

3 This is in order for fl to be a well defined operator. The choice of zero is convenient but 
otherwise arbitary. 
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all i, U,(a*\cr,) < U,(a*) + si. Consequently, it is possible to find a transfer 
rule that will prevent each player i from deviating from a* to ai. (Choose 
t such that Vie N, C wcR t,(w)-(7c(w;a*)-7c(w;u*\ai))=si. It is easy to 
see that such a t exists.) Hence, even if p(a) = 0, i.e., if all the players can 
induce the same distribution on Q by deviating, local punishments are 
possible. Suppose now that the average gain from a deviation c1 is positive. 
In this case, it is necessary that p(a) be positive, i.e., that at most n - 1 
players can induce the same distribution on 52 by deviating from a*, for 
otherwise “local punishments” are not possible. Indeed, if p(a) = 0, then, by 
balancedness of t, 

c t,(w). (4% a*) - 4% a*\%)) 
n’ E R 

= -iFn w;a ti(w)‘(lr(w; u*)-71(W; u*\an)) 

= - c c t,(w). (n(w; a*)-n(w; u*\a,)). 

i#n WER 

Let si=C wpQ t,(w). (n(w; a*) - rc(w; a*\~,)). Then the local incentive 
compatibility conditions imply that ViE N, U,(u*\a,) < U,(u*) + si. But 
since p(a) = 0, CipN si = 0, and this contradicts the assumption that the 
average gain from the deviation a is positive. Consequently, /I* < + cc is a 
necessary condition for local, hence global, incentive compatibility. 
Theorem 2 shows that this condition is also sufficient. 

Remark. It is possible to show that a* is a strict Nash equilibrium, i.e., 
that for any i, a,? is the unique best response to a?,, if, and only if, 
/I*< +co, and [a#u* and p(a)=OJ*[j(a)= -a]. 

There is a corollary to this theorem which is also a consequence of a 
result by Carver [2]. The condition identified above is sensitive to a 
change in the direct utility functions Ui. It is of interest to know when a 
partnership can sustain a given vector of actions a* for any choice of the 
utility functions. (Observe that in this case a* is not obligatorily efficient 
for ail specifications of the utility functions.) It should be clear to the reader 
that, in order to attain such a strong result, the condition on the environ- 
ment is a pure informational requirement: it must be true that for any 
deviation a, p(a) > 0, i.e., that irrespective of a, all the players cannot 
induce the same probability distribution on 52 by deviating from a*. This 
result appears in Matsushima [11] and is similar in spirit to the result 
obtained, in a different setting, by d’Asprement and Gerard-Varet [3]. 

PROPOSITION 3. There exists a balanced transfer rule t that sustains a* 
for every { Ui, i E N} if, and only if, for every a # u*, p(a) # 0. 

Proof: Follows Theorem 2. 1 
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This condition is also necessary and sufficient for the existence of transfer 
rules having the property that the expected share of each partner is maxi- 
mum when she is eficient, i.e., 

ViEN,Va,.EM,, jrQ t,(w). [7c(w; a*) - lT(w; a*\cq)] > 0. 

Matsushima [ 111 calls such transfer rules penalty rules. 
In the deterministic case, it is assumed that for every a, there exists 

w(a)~Q such that n(w(a); a)= 1. In this case, Legros [lo] presents an 
interpretation similar to those of Theorem 2 and Proposition 3. The con- 
dition in Proposition 3 implies, in the deterministic case, that for every 
a E A, there exist in N and Jo N such that w(a*\u,) # w(u*\u,). That is, by 
observing the output, it is possible to identify who did not deviate. 
However, the fact that it is possible to verify who did not deviate is a 
property that we get for free in the deterministic case because only one 
output level can be atteined by a given vector of actions. We show in 
Theorem 2 and Proposition 3 that the possibility to verify who did not 
deviate by observing the output is not essential in the stochastic case. 

If there exists a transfer rule that sustains u*, then there exist an infinity 
of such solutions. Indeed, for any t that solves the partnership problem, 
another transfer rule i where i,(w) = t,(w) + zi, where z is such that 
CicN zi= 0, also solves the partnership problem. However, there exists a 
unique solution of minimal norm, when the Euclidian norm is defined on 
the space (RIR’)n. 

PROPOSITION 4. Suppose that there exists a solution to the partnership 
problem. Then there is a unique balanced transfer rule that sustains a* whose 
Euclidian norm is minimum. 

Proof: Let K= (t 1 t is balanced and sustains u*}. If there is a solution 
to the partnership problem, K # 0. K is clearly compact and convex. 
Because the Euclidian norm is convex,4 there is a unique t E K such that 
IIt/I=argmin{IIIIlI2EK}. 1 

Theorem 2 and Proposition 3 suggest a stylized fact about partnerships: 
symmetry is in general bad news. Indeed, in a symmetric partnership, each 
partner can mimic perfectly the deviation of another partner. Hence, if 
there exists an action ui for which U,(a*\u,) - U,(u*) > 0, there will exist 
a vector a such that for every j # i, U,(u*\uj) - Uj(a* ) > 0, and such that 
p(u) =O. Consequently, P(u) = + cc and there exists no solution to the 
partnership problem. In this case, for any transfer rule, there will be an 

4 The ncmn of a Hilbert space is convex if whenever II x II = 1 and 11 y  II = 1, then II x + .V II = 2 
only if x = y. 
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efficiency loss. When the output is deterministic, Legros [lo] shows that 
the efficiency loss can be made as small as we want when the partners use 
mixed strategies. It is very reasonable to conjecture that the same type of 
approximation result will hold when the output is stochastic. 

5. LIMITED LIABILITY 

Until now, we have been concerned with the existence of a transfer rule 
that will sustain a particular vector of actions. For this reason, the only 
restriction that we imposed on the transfer rule was a balance condition. 
However, in many situations, transfers are also constrained by the degree 
of liability of each partner. This section and the next study the conse- 
quences of a bankruptcy constraint for the existence of a solution to the 
partnership problem. 

Let B=(B,)ER:, where B,> 0 is the maximum liability that player i 
can suffer by participating in the partnership, i.e., is the maximum amount 
of money that she can be asked to pay. A transfer rule t is said to be 
bounded with respect to B if for every ie N and every w  E Q, t,(w) > - Bi. 
In this section, we fix B arbitrarily. Let di: Q --* R, and d = (d,, . . . . d,,). 
In the same way as in the previous section, it is possible to show that there 
exists a balanced transfer rule that is bounded with respect to B if, and only 
if, for every vector of mixed strategies a, every d, and every k, either 

C C”i(a*\cli)- ui (a*)16 c B,. 1 di(w) 
iEN isN IV E R 

(2) 

or 

Ii, 3w, 7C(W; U*\Ui)-d,(W) #k(W). (3) 

(The proof of this claim is given in the Appendix.) From this, the following 
characterization result follows. 

THEOREM 5. There exists a balanced transfer rule that is bounded with 
respect to B and that sustains a* if, and only if, 

n.b*< 1 Bi. (4) 
isN 

Proof Fix ~1, d, and k arbitrarily. Suppose that neither (2) nor (3) hold, 
i.e., 

1 ("i(a*\ai) - ui (a*)) > C Bi. C di(w) 

iEN itN M’E R 
(5) 
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and 

VieN,VweQ, ?T(w; a*\a,) - di(W) = k(w). (6) 

From (6), and using the fact that rc is a probability distribution, 

and 

-Vie N, l- C k(w)= 1 di(w) 
wsR WES; 

(7) 

VWESZ, min rc(w; a*\~,) 2 k(w). (8) 
iEN 

From (51, (7), and (8), 

,;N ( ui(a*\ai) - ui (a*))> c Bi. 1 - 1 
( 

k(w) 
ieN II’ E R > 

2 C Bi.Aa) 
itN 

(9) 

which implies that n . b(a) > xie N Bi. 
Conversely, suppose that for some a, n . /l(a) > Cic N Bi. Choose 

and 

k(w) = min n(w; u*\a,) 
ieN 

di(W)=7C(W; a*\a,)-$; n(W; u*\aj). 

Note that equalities (6) hold. By definition of d, 

;FN (ui(a*\ai)- ui (a*))- 1 Bi. C di(“‘) 
ieN wcR 

= C (U,(u*\a,)-U,(a*))- C Bi.p(a). 
iEN ZEN 

Since n . b(a) > Cis N Bi 2 0, obligatorily b(a) > 0. 
Hence, Cis ,,, (U,(u*\a,) - U,(u*)) > 0. It follows that the inequality (5) 

holds. This proves that there exists a balanced transfer rule that is bounded 
with respect to B if, and only if, for all a, n. p(a) <xi. N Bi. 1 

Theorem 5 implies that only the level of the average liability, CiEN BJn, 
matters for the existence of a balanced transfer rule that is consistent with 
limited liability. 
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6. NEUTRAL TRANSFER RULES 

We can think of the transfer rule as a punishment-reward device. For 
this reason, it is reasonable to question the existence of transfer rules that 
do not punich, in an expected utility sense, the players when they are 
efficient. This is important if the utility functions u~(M’., a) incorporate a 
notion of fairness or are the outcome of an ex-ante bargaining among the 
partners. Neutral transfer rules have the property that the ex-ante expected 
utility level of each partner coincides with the level that is deemed “fair.” 
We define a transfer rule to be neutral if each player has a zero expected 
transfer at the efficient vector of actions, i.e., t is neutral when 

ViEN, .FQ t,(w) . ~T(w; a*) = 0. 

If a sharing rule t is neutral and implements a*, then EUi(a*, t) = U,(a*) 
for each partner iE N. Consequently, neutral sharing rules implement 
not only the efficient vector of actions a* but also the utility levels corre- 
sponding to the first best. 

The existence of neutral and balanced transfer rules that sustain a* is in 
general trivial. Indeed, consider any balanced transfer rule t that sustains 
a* (hence, we suppose that the condition of Theorem 2 holds). Define a 
new transfer rule i as follows, 

ViEN,VwEQ, Ti(w) = t,(w) - C t,(w) . x(w; a* ). 
we62 

Clearly, 7 is neutral and is balanced. i also sustains a* since by adding a 
fixed transfer, the incentive compatibility conditions are not affected. 

The reader will notice that if t is bounded with respect to B, there is no 
reason to expect that 7 is also bounded with respect to B. For this reason, 
the existence of neutral and balanced transfer rules that sustain a* and that 
are consistent with limited liability is not a trivial problem. Let B be the 
total liability available in the partnership. A partition of this liability among 
the partners is any vector BE Iw: such that C,B,= B; hence a possible 
partition is when one partner i has full liability of Bi = B and when all the 
other partners have a zero liability (i.e., the other partners cannot be asked 
to pay a positive amount). We will show below that how the total liability 
is partitioned among the partners is crucial for the existence of neutral 
transfer rules. 

The following lemma gives the necessary and sufficient condition for the 
existence of a neutral and balanced transfer rule that sustains a* and that 
is bounded with respect to B. 

642/S/2-6 
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LEMMA 6. There exists a neutral and balanced transfer rule that systains 
a* and that is bounded with respect to B ly, and only if, there does not exist 
qe:iw:, a: Q + Iw, such that 

VW, 4w)>yEy [4i.~(w;a*)-(~(w;a*\Mj)-~~K(w;a*\Uj))] (10) 

(11) 

ProoJ See the Appendix. 1 

Note that the right hand side of (11) is a measure of the “excess liability” 
in the partnership, weighted by the closeness of the deviations. Excess 
is meant with respect to the liability necessary to insure existence of a 
balanced transfer rule that is bounded with respect to B. This condition is 
not very intuitive and is not stated in terms of the primitives of the model. 
For this reason, we present a necessary condition and a sufficient condition 
that rely only on the primitives of the model. 

To avoid trivialities, we suppose that the condition of Theorem 5 is 
satisfied, i.e., that there exists a solution to the partnership problem 
consistent with limited liability. 

Assumption 1. The total liability B is such that there exists a balanced 
transfer rule that is bounded with respect to B, for any partition B of B. 
Hence, Va, B - n p(a) 3 0. 

We present below a necessary and a sufficient condition for the non- 
existence of a neutral and balanced transfer rule consistent with limited 
liability. These conditions rely on a comparison between the relative 
liability shares of the partners and the closeness of the deviations used by 
the players. Before stating these conditions, we need to introduce some 
notation. Let a be a vector of mixed strategies. We define the following sets: 

sZ(i;a) is the set of outputs to which n[a*\a,] assigns the minimal 
probability among all the probability measures z[a*\aj]. For any output 
w, and any collective deviation a, if w  is an element of Q(i; a), then the 
difference n(w, a*) - n(w; a*\a,) is greatest for partner i. Consequently, 
if ti(w)>O (resp. t,(w) CO), partner i has more to gain (resp. lose) by 
deviating than the other partners. 

Consider the set R of all possible permutations of N, i.e., 

r:N+NIViEN,V’EN,r(i)#r(j)and IJ {r(i)}=N 
ieN 
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Let i, be the ith element of the set r(N), once ordered by >, i.e., i, satisfies 
I{i~NIr(i)<i,)I=i,. G’ tven a permutation r and a mixed strategy vector 
a, we can define the following sets: 

F,,(r, a) = Q(r-‘( 1,); a) (12) 

Fj~(r,a)rO(r~l(i,);a)\Fj;i,--I, any i, 2 2. 

Define \ifi, Pitry aI= Cn~EF,,,~,r,ar~ x(w; a*). If FICij(r, a) = (25, let pi(r, a) = 0. 

Clearly, (FrCi,(r, a)] iEr(N)} is a partition of Q and CiaNpi(r, a)= 1. 
Finally, let b, be the relative liability of partner i, i.e., 

PROPOSITION 7. Suppose that Assumption 1 holds. Zf there does not exists 
a neutral and balanced transfer rule that sustains a* and is bounded with 
respect to B, where B is some partition of the total liability B, then there 
exist a vector of mixed strategies CI, a permutation r E R, and an index k < n 
such that 

iFk (bi -Pi(r, a)) > 0. 

Proof From Lemma 6, there exist a, q, and a( .) such that (10) and 
(11) hold. Let r be a permutation of N such that i, <j,*qj,>qj,. 
Construct the sets FJr, a) as in (12). Because no confusion will arise, we 
will drop the subscript r and (r, a). (10) implies that 

ViEN,VwEFi, a(w)~qi~~(w;a*). (13) 

From (13), rearranging (1 1 ), using q > 0 and using Assumption 1 (the right 
hand side of (11) is nonnegative), it follows that Cy=, (bi -pi). qi > 0. Let 
k be the first index for which CF= i (bi-p,) .qi> 0. Such an index exists 
since k=n satisfies the inequality. By definition of k, (bk-pk) .qk >O. 
Since qk 3 0, it follows that bk -pk > 0. By construction, qkp 1 2 qk. Hence, 
Ck;: (b,-p,).q,+(b,-, -pk--l +b,-p,).q,_, >O. If the coefficient of 
qk- 1 is nonpositive, the inequality implies that Cf;: (bi -pi). qi > 0, 
but this is a contradiction since this implies that there is an index smaller 
than k than satisfies the inequality. Hence the coefficient of qk- 1 is 
positive. Continuing recursively, we obtain the result since we show that 
ql*Cf=l (bi-pi)>0 and ql>O. 1 

The reader will note that if an index k satisfies the condition in Proposi- 
tion 7, then k is strictly less than n since CiGn (b,-pi(r, a)) =0 for any 
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permutation r and any vector of strategies a. We now show that this 
condition is also sufficient for nonexistence of neutral transfer rules when 
the excess liability is small and when B attains a maximum. 

PROPOSITION 8. Suppose that /3 attains a maximum and let 0 -C/I* = 
max, /?(a).’ Suppose -that B is such that B=n .a* and that there exist 
a* E argmax{b(a); a EM}, a permutation r, and an index k such that 
Cisk (b,-pi(r, a*)) >O. Then, there does not exist a neutral and balanced 
transfer rule that is bounded with respect to B. 

Proof. Let a*, k, and r satisfy the condition of the proposition. To 
simplify notation, we suppose that the order induced by r is (1,2, . . . . n) and 
we write pi instead of pi(r, a*). Note that by definition of a*, and by the 
assumption on the total liability, the right hand side of (11) is equal to 
zero. Consider the family f F,; i E N > that is induced by the permutation r. 
Let q>O and define ViQk, qi=q and Vi>k+l, qi=O. If Fk+,=@, 
choose q > 0 arbitrary. If E;, + , # @, choose q such that 

O<qQmin 
71(w; a*\a,*) - 7r(w; a*\a*) 

n(w; a* ) 
z>k+l,j<k, wEFi 

Such a choice is possible since by definition of the family {F, 1 i E N} the 
right hand side of (14) is strictly positive. From (14), it follows that for any 
ieN, any wgFi, Fi#@, and any jeN, 

qi.71(w;a*)>qj.n(w;a*)-(z(w;a*\aT)-z(w;a*\a*)). (15) 

Consider the function a: D + R defined by VW E Fi, a(w) E qi. 7c(w; a*). 
From (15), the function a satisfies (10). It follows that 

= 4. c Pi. 
i<k 

5 The fact that B* = max P(a) is not trivial. Indeed, b is not in general a continuous function 
of a, hence a maximum may fail to exist. Suppose that 0 < fi* < + co. Then it is possible to 
show that a maximum exists if, and only if, there exists a sequence {c? } such that fi(ak) + /I* 
and such that p(a) >O, where a = lim a’ (such a limit exists-by using a subsequence if 
necessary-by compactness of M). We observe that if p* = 0, then I = 0 is a solution to the 
partnership problem. 
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Now, the left hand side of (11) can be rewritten as 

C ‘i-(vi- C U(W))= 1 B;.(~‘v.~T~~~) 
iEN W’ E R ieN 

where the inequality follows by assumption. But then, (10) and (11) hold, 
and Proposition 8 follows from Lemma 6. 1 

If the condition of Proposition 8 is satisfied, there does not exist a 
neutral solution whenever the total liability of the partnership is in a 
certain neighborhood of n ./I*. Hence, even if there is excess liability in 
the partnership, it might be impossible to find neutral solutions. 
Proposition 8 points out the importance of the repartition of the total 
liability among the partners when the total liability is close to n . /.I*. When- 
ever there exist in N and a,~ Ai for which V,(a*\a,) > U,(a*), it is possible 
to find repartitions of the total liability that violate the condition of the 
proposition, even if there exists balanced solutions to the partnership 
problem. For instance, let a* be chosen as in Proposition 8, and let i be 
such that lQ(i; a*)1 is minimum over N and hence strictly less than 1. 
(Indeed, observe that if V,(a*\a,) - U,(u*) >O for each some i and ui, 
obligatorily /I* > 0. Consequently, there must exist a player i for which 
1 Q(i; a*)/ < 1 for otherwise /I* = + co.) Any repartition of the total liability 
such that bi > 1 Q(i; a*)[ will imply the nonexistence of a neutral solution. 
This observation leads to the following result. 

COROLLARY 9. Suppose that /3 has a maximum and that a* is such that 
/?(a*) = fi*. If the family {Q( i; a* ) } forms a partition of !2, then there exists 
a neutral solution compatible with limited liability only if for each itz N, 
bi=C wcR(i:a’) 4w a*). 

ProojY Under the assumption of the corollary, for any permutation r, 
for any partner i, F,,,,(r, a*) =Q(i; a*), i.e., for any permutation r, 

Pitry a*)=CWER~i;a*~ n(w, a*). From Proposition 8, there exists a neutral 
solution only if for each ie N, bi<pi(r, a*). Since Cipi(r, a*) = xi bi= 1, 
the result follows. 1 

Corollary 9 has a strong implication. If for the worst collective deviation 
a*, for any output w, there is a unique partner that minimizes rr(w; u*\aT ), 
then there is a unique partition of the total liability that is compatible with 
the existence of a neutral solution. Moreover, the relative liability of each 
partner i must be equal to the rc[u*]-measure of the set of states whose 
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probability of occurrence is minimum when i deviates to cr:. The example 
of Section 8 is an example of such a case. 

7. INDIVIDUAL RATIONALITY 

If the partners have outside opportunities, the partnership will form only 
if the expected utility of each partner is larger than her reservation utility, 
i.e., the level of utility corresponding to her next best opportunity. Let _Vi 
be partner i’s reservation utility level. A necessary condition for the 
partnership to form is that 

(16) 

We can think of U,(a*) - gi as the first best opportunity cost for partner 
i of participating in the partnership. Note that by risk neutrality, the sum 
in (16) is the sum of the opportunity costs not only in the first best (i.e., 
without transfers) but also in a solution involving side-payments. To avoid 
trivialities, we will suppose that (16) holds. The sharing rule t satisfies 
individual rationality if EU,(a*; t) > _Ui for each partner i, i.e., if 

ViE N, b~ofi(W)~7t(W;a*)8~i-Ui(a*). (17) 

The existence of individual rational sharing rules that sustain efficiency 
is immediate if the condition of Theorem 2 holds. Indeed, consider any 
solution t and define a new sharing rule i such that 

ViEN,VwEl?, ij(W)=ti(W)- 1 ti(~)‘71(~~;a*)+_Ui--U,(U*) 

G.ER 

+k’ ,C [Ui(a*)-_Uil. 
lGN 

Then, from (16) 

and for each w  E Sz, 

2 V;- Uj(a*), 

Hence, F is an individually rational transfer rule that implements efficiency. 
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Individual rationality can be difficult to satisfy when imposed in conjunc- 
tion with limited liability. There exist necessary and sufficient conditions for 
the existence of an individually rational transfer rule that satisfies limited 
liability and that sustains efficiency. These conditions are very similar to 
the conditions of Lemma 6: (10) is unchanged, and the condition corre- 
sponding to (11) is 

1 14i’[B,+_ui-“j(u*)l-Bi’ 1 dw)}>[ C Bj-n’B(a)].p(a). 
ieN WER itN 

(18) 

It follows that if, for each partner i, _V, d U,(a*), the existence of a neutral 
transfer rule implies the existence of an individually rational transfer rule 
(the reverse is not true in general). 

Proposition 10 (resp. 11) gives a necessary (resp. sufficient) condition for 
the nonexistence of individually rational transfer rules when limited liability 
is imposed. Most of the notation is borrowed from Section 6. We define 

ViE N, di= 
U,(a* ) - _ui 

B . (19) 

ai is positive if, and only if, partner i’s first best opportunity cost is positive. 
The reader will note that (16) is compatible with bi < 0 for some partner i. 

PROPOSITION 10. Suppose that Assumption 1 holds. Zf there does not 
exist an individual rational and balanced transfer rule that sustains a* and is 
bounded with respect to B, where B is some partition of the total liability i?, 
then there exist a vector of mixed strategies a, a permutation r E R, and an 
index k < n such that 

PROPOSITION 11. Suppose that /3 attains a maximum and let 
0 < /?* = max, /I(a). Suppose that B is such that i? = n . /?* and that there 
exist a* E argmax {/?(a); a E M}, a p ermutation r, and an index k such that 
Zig/c (bt-a;-Pi( r, a*)) > 0. Then there does not exist an individual rational 
and balanced transfer rule that is bounded with respect to B. 

Proofs. Similar to the proofs of Propositions 7 and 8. 1 

Hence, with individual rationality, what matters is not only the relative 
liability of partner i but also the first best opportunity cost of participating 
in the partnership. This tradeoff is illustrated in the example of Section 8. 
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8. AN EXAMPLE 

Let N=2, Q= {w,, w,}, Vi= 1,2, A,= (0, l}, a* = (1, 1). Suppose that 
U,(a*\O) - Ul(u*) = - 1, U,(a*\O) - UJa*) = l/2, rc[u*] = [ f$], and 
rr[u*\O] = [:$I. Then /?(a) is maximized for 01* = (1,0) and /I* = 1. From 
Theorem 5, there exists a balanced transfer rule that sustains a* and that 
satisfies limited liability if, and only if, B> 2. The incentive compatibility 
constraints are 

tl(wl)-tl(w2)~ -4 UC1 1 

t,(w, I- b(%) 2 2. UC21 

By choosing t such that t,(w,) = -2.s,, t,(wZ) = 2.s,, t,(w,) = 
2.s,, t,(w,)= -2.s,, the two incentive compatibility conditions are 
satisfied and for each i = 1,2 and each w  E Q, t,(w) > - Bi, where Bi = 2. si. 
Hence, whenever the total liability is greater than 2, for any repartition of 
this liability between the two partners there exists a transfer rule that will 
sustain a* and that is bounded with respect to B. 

Here, Q(l;cc*)= {wZ} and Q(2; a* ) = { wi }. From Proposition 8, there 
exists a neutral solution if, and only if, si =s2 = l/2. Indeed, ~(1; r, cc*) = 
~(2; r, a*) = l/2 for any permutation r. Hence, si 6 l/2 and s2 < l/2. Since 
si + s2 = 1, the result follows. A direct proof is possible in this example. 
Neutrality implies that for each i= 1, 2, t,(w,)= -ti(wZ). Because t is 
balanced, thereexistsksuch that -tl(w1)=tl(w2)=tZ(w,)= -t,(w,)=k. 
But then (ICl) and (IC2) imply that kE [1,2], or -kE C-2, -11. 
Limited liability imposes that VIE N, -ka -2.~~. If si<1/2 for some i, 
then - 2 . si > - 1, and this contradicts incentive compatibility. 

The existence of an individual rational transfer rule that is compatible 
with limited liability depends on the values of _V, - U,(u*) and 
_U, - U,(u*) as well as on the relative liability levels s1 and s2. Applying 
Proposition 11, there exists an individual transfer rule compatible with 
limited liability if, and only if, for each partner i, si - 6, < 4, which implies 
that si< $+ hi. We know that 6, + 6,a 0 if the partnership forms. If 
6, > 0 and 6, < 0, then it is necessary that partner 1 have a higher relative 
liability than partner 2; this is because partner 2 must be compensated for 
belonging to the partnership by a positive expected transfer if individual 
rationality is to be satisfied. 

9. CONCLUSION 

We characterize the environments for which a partnership can sustain 
efficiency through monetary transfers even if no information can be gained 
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by observing the realization of the output. We introduce a concept of 
distance between deviations and we show that the possibility to sustain a 
particular vector of actions is related to the distance of deviations with 
respect to the social gain to the partnership when the partners deviate. This 
leads to the definition of an index /I of the likelihood of deviations in a 
partnership. We show that it is possible to sustain a particular vector of 
actions if, and only if, the index is bounded by a finite positive number. 

If the partners have limited liability, i.e., if the transfers are bounded 
below by a finite vector, then we show that it is possible to sustain a vector 
of actions by transfers that satisfy a no-bankruptcy condition if, and only 
if, the average liability in the partnership is greater than the supremum of 
the index p over all possible deviations. Thus, the existence of a transfer 
rule consistent with bankruptcy constraints depends only on the total 
liability in the partnership and the number of partners: the partition of the 
total liability among the partners does not affect existence. However, the 
partition of the total liability plays a role for the existence of neutral 
transfer rules and of individually rational transfer rules. 

Some results of this paper depend crucially on the particular form of 
the utility functions. For instance, the result that the existence of budget 
balanced transfer rules satisfying limited liability and implementing the first 
best depends only on the level of the average liability is linked to the 
assumption of quasi-linearity. While the assumption of risk neutrality 
seems to be crucial for most of the results of this paper, separability does 
not seem to play such an important role. Further work is needed in order 
to extend our results to general utility functions and to understand the 
exact role that risk neutrality and separability play for the implementation 
problem. 

Throughout the paper we have confined our attention to the 
sustainability of pure strategy profiles. This is not so restrictive in our 
model because it is always possible to find a pure strategy profile which is 
efficient. Nevertheless, the extension of our work to the mixed strategy case 
could be interesting from the following point of view. Legros [lo] showed 
that in the deterministic case, s-efficiency can be sustained in mixed 
strategies even if our necessary and sufficient condition is violated, e.g., 
when the partners are symmetric. It is reasonable to conjecture that with 
stochastic output c-efficiency can also be sustained in mixed strategies. One 
of us is currently completing a paper proving this conjecture. 

Fudenberg et al. [6] analyze a repeated partnership model with imper- 
fect monitoring and give a sufficient condition for s-sustainability which is 
called pairwise identifiability. Pairwise identifiability at the efficient vector 
of actions a* is actually stronger than our necessary and sufficient condi- 
tion in Theorem 2. It will be interesting to consider s-sustainability of 
efficiency in mixed strategies based on the ideas addressed in this paper 
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instead of the idea of pairwise identifiability, because of the possibility of 
sharpening Fudenberg et al’s [6] results. 

APPENDIX 

Proof of Lemma 1 

(ii) is the generalization of the condition that the distance between two 
elements is equal to zero if, and only if, these elements coincide. (iii) is the 
generalization of the triangle inequality. Observe that by construction of d, 
2 satisfies the symmetry condition for a metric. Hence (iv) follows from 
(i)-(iii). (i) is immediate. For (ii), suffkiency is obvious. For necessity, let 
Q ELI(Q) and suppose that d(Q) =0 and that there exists two distinct 
elements q and 4 in Q. Since Q is included in a simplex, it must be true that 
there exists WEST for which q(w)> d(w). But then, 

But this contradicts the fact that d(Q) = 0 and q E A(Q). To prove (iii), let 
Q, T, V be three subsets of d(Q). By definition of d, 

We observe that for any w  E Sz, 

= min {j;fs q(w) + jff7 q(w), if’, q(w) + $ q(w), 

inf q(w)+;;;qot’), 2.j$q(M,)} 4ET 
6 min 1;‘;: 4(w) + j$ q(w), Jff7 q(w) + if; q(w)} 

=min {t4~q(w),JPCq(w)}+tffrq(w) 

Q min (j~i q(w), $-$ q(w)} + q’(w) 

=qEi;~b,dw)+qo(w)2 

where q” E T is an arbitrary element of T. By summing over w  E 0, and 
substituting in (a), the result follows. (v) is a monotonicity property of d 
and its proof follows the property of the inf operator. 
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Proof of Theorem 2 

Recall that Q = (wl, . . . . wl}. We rewrite the partnership problem into a 
linear algebraic problem. By definition of a probability measure, 

VaEA, n(w,; a) = 1 - 1 7c(w; a), 
n’ z “, 

As a consequence, the incentive compatibility conditions can be rewritten 

Vi, VU;E Aj, 

C [x(w; a*) - rr(w; a*\ai)] . [t,(w) - t;(w,)] 2 U,(a*\a,) - U,(a*). 
n’ z M‘, 

By using the budget balance condition, the incentive constraints for partner 
n become 

vanEA,, - C [~(w;a*)-n(w;a*\a,)l. C Cti(w)-fi(w,)l 
W’ z “, ifn 

2 Un(a*\a,) - u,(a*). 

For each partner i, let Pi be the T, x 1 matrix whose (j, w)th element is 
equal to 

7c(w; a*)- x(w; a*\a,(j)) if w# w, 

pi(j, w)= 

C (4W; a*\ai(.d) - 4W a*)) 

if w=w,. 
w  z “‘, 

Let P be the CieN Tj x (n - 1). I matrix 

[ 
P, 0 ... 0 

0 P, ... 0 

p= ; ; 

. . . ; 1 0 0 .‘. P,-, 

-P, -P, ... -P, 

Let ti be the column vector of dimension I whose jth element is t,(w,) and 
let t be the (n - 1). I-dimensional column vector obtained by superposing 
the vectors t,, t,, . . . . trip,, in this order. Finally, let ui be the T,-dimensional 
column vector whose j-th element is u,(j) = U,(a*\a,( j)) - U,(a*) and let 
u be the column vector with C,, N Ti rows obtained by superposing the 
vectors ui in the order defined by 1, 2, . . . . n. 
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It is immediate that the partnership’s problem has a solution if and only 
if the system P. t 2 u is consistent. We will use the following result of Fan 
[4, Theorem 1). 

LEMMA A. The system P. t 2 u has a solution whose norm is bounded if, 
and only tf, whenever there exists II E RF1 ‘I such that J. . P = 0 then A . u < 0. 

For a given vector of mixed strategies CI, we will use the following 
notation: 

u,(a,) = C crj(ai) .ui(aj) 
REA, 

Pi(w, ai) = C cc,(a,) . Pi(w, ai) 
REA, 

Condition C. Vcc E M, Vz E R:, either Ai< n, such that zi. P,(cr,) # 
z;P,(cr,), or ~izi~ui(cri)60. 

LEMMA B. The partnership problem has a solution if, and only if 
Condition C holds. 

Proof of Lemma B. This is a restatement of Lemma A. For o! E M, 
z E rW: given, let us define a vector I such that Va, E A,, A(a;) = zi. a,(a,). 
Then Condition C implies the condition of Lemma A since by varying c( 
and z one can obtain all the vectors 1 in rW$l Tz. Reciprocally, if the condi- 
tion of Lemma A holds, then for any 2 in cW:l r,, it is possible to define the 
nonnegative real numbers zi such that Vi EN, zi = C,,, A, A(a,). If zi > 0, we 
define u,(a,) = I(a,)jz,. Otherwise, we choose any mixed strategy in Mi. 
This leads to Condition C. 1 

Lemma B is also true if the weak inequality is replaced by a strict 
inequality when C, zi. ui(ai) < 0 appears in Condition C (Fan [4, 
Theorem 61.) In this case, if the new Condition C is satisfied, a* is a strict 
Nash equilibrium (i.e., being efficient is the only best response if the other 
partners are efficient). 

To prove Theorem 2, it is enough to prove that Condition C is equiv- 
alent to the condition that /I* < + 03, where /I* = sup{/?(cc)l c( E M). 

(Show C = fi* < + co) Suppose that Condition C holds. Consider 
a E A4. Suppose that xi ui(ai) > 0 (otherwise, /?(a) < 0). Then, setting Vi E N, 
Zi = 1 in Condition C, there must exist an index i such that Pi(ai) # P,(a,), 
i.e., n[a*\ai] # z[a*\a,]. But then p(a) > 0 which proves that b(a) < + co 
since Ciui(ai) < + co. Suppose now that /I* = +co. By definition of the 
supremum, there exists a sequence {a”} such that fi(ak) -+ + co. Since M 
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is compact, there exists a* such that c? + c1* (in the product topology 
on M). b(ak) + +co only if p(a“)--+O and if CiENui(af)-+8, 6>0. By 
continuity of CieN (U,(a*\oi,)- UJa*)) and of p(B) in 6, it follows that 
b(a*) = + co, which is a contradiction since a* EM. 

(Show /?* < + co + C) Suppose that /I* < + co but that Condition C 
is violated. Then, there exist a vector of mixed strategies a and a non- 
negative vector z such that 

Vi, zi.Pl(ai)=zn.P,(a,) 

~zi~u,(a,)>O. 

and (a.1) 

(a.21 

(a.2) implies that there exists i such that zi > 0 and ui(ai) > 0, i.e., 

U,(a*\a,) > U,(a*). (a.31 

Case 1. z;P,(a,)=O. Since zi>O, (a.1) implies that Pi(ai)=O. This 
implies that n[u*] = n[u*\ai]. Consider a new strategy oi such that oii= ai 
and for any j#i, ij(uJF)= 1. Hence, x[a*\oii] =n[u*\oi,]. Because 
~~(4,) > 0 and Vj# i, u,(oi,) = 0, B(4) = + co, which contradicts our assump- 
tion. 

Case 2. z, . P,(a,) # 0. Since z 2 0, it follows from (a.1) that Vj, zj> 0. 
Without loss of generality, we suppose that n is such that Vj, z,> zj. Let 
xj = Zj/Z,) xj E (0, 1 ] by construction. (a.1) can be rewritten as 

(1 -xj).n[u*] +xj.7c[u*\uj] =n[u*\a,]. (a.41 

Let aj[xj] = (1 - xj) . at + xj . aj be a new mixed strategy for player j # n. 
a[xj] is a mixture of a, and of the pure strategy a,*. Let a[x] be the 
resulting vector of mixed strategies. (a.1) implies that 

Hence, p( a [x] ) = 0. Observe that 

~Zj~Uj(aj)=Z,~~Xj’Uj(aj) 

1 

=Zn~~Uj(cl,[xll)~ 

i 

Hence, ~juj(aj[xj]) >O since z,>O. This implies that j?(a[x])= + co 
which is a contradiction. 
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Proof of Eqs. (2) and (3) 

Let Z be the 1 x I identity matrix. Define Pi = [ 71 and let P be defined by 

p= 

P, 0 ... 0 
0 P, ‘.. 0 

[I: . 

. . 
0 0 

: 
... B,-, 

-p, -p, . . . -p, 
Let bi = ( -Bi, . . . . -Bi) be the I-dimensional column vector in which each 
component is equal to - Bi and let iii z [ :A]. li denotes the column vector 
obtained by superposing the vectors fii, i: 1, 2, . . . . n, in this order. Then, 
there exists a balanced transfer rule that is bounded with respect to B if 
and only if the system P. t > ti has a solution. Applying Lemma A to this 
system, the nonexistence of a solution to such a system is equivalent to the 
existence of functions di: Q --$ IF! + , k: $2 + IR such that the following two 
conditions hold: 

C (ui(a*\ai) - ui (a*))> 1 Bi. 1 4(w) 
icN itN WER 

TC(W; a*\a,) - TC(W; a*) - di(w) = k(w). 

(a.3 

(a.6) 

We show that this is equivalent to the opposite of the condition of 
Theorem5. Let k’:Q+R be defined by VWGQ, k’(w)=k(w)+n(w;a*). 
From (a.6), for each i and each w, n(w;a*\a,)- k’(w)= di(w). Hence, 

ViE N, 1 4(w) = 1 - w;a k’(w) (a.7) 
H’ E R 

VWEQ, k’(w) < Ei; z(w; u*\a,), (a.81 

where (a.8) uses the fact that di > 0 for all i E N. Using (aS-(a.8), it follows 
that 

1 (ui(u*\aj) - ui (a*))> C Bi.p(a). 
iEN icN 

(a-9) 

Clearly, if p(a) # 0, this is equivalent to Cic N Bj -C n . /?(a). If p(a) = 0, the 
left hand side of (a.9) is positive. Hence, j?(a) = + co and xjE N Bi < n ./?(a). 
Suppose that p(a) = 0 and that Cic N Bi < n . p(a). By definition of /? and 
since B> 0, it must be true that CisN (U,(u*\a,) - U,(u*)) >O, for if 
xi, N (Ui(u*\ai) - U,(u*)) < 0, j?(cr) < 0 which contradicts the assumption. 
This proves Theorem 5. m 
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Proof of Lemma 6 

We observe that there exists a balanced transfer rule that is neutral if, 
and only if, there exists a balanced transfer rule that satisfies 

Vie N, ,,To ti(W).n(w; a*)>O. (a.lO) 

Clearly, (a.lO) must hold if t is a neutral transfer rule. Suppose that (a.lO) 
holds and that t is a balanced transfer rule. By using the balance condition, 
we have 

Vjj'E N, - C C ti(w).n(w;a*)>O. 
IeN\ WER 

But the left hand side is nonpositive. Hence, it must be true that (a.lO) 
holds with an equality. 

Let e E R’ be a row vector whose w,th element is equal to n(wk ; a*). Let 
Pi be the matrix obtained by superposing the matrix pi constructed 
previously and the row vector e, i.e., j3; = [z]. Let P be the resulting 
matrix P, 0 .‘. 0 0 P, ... 0 p= [ 1 ; ; . . . ; . 0 0 . . . Pnpl -p, -p” . . . -p, 
Let iii be the column vector obtained by adding the element 0 to the vector 
tii that we constructed above, and let ii be the vector obtained by super- 
posing the n vectors iii. From our previous reasoning, the system i?. t > ii 
incorporates the conditions that t is a balanced transfer rule that is bounded 
with respect to B and that is neutral. By using the same reasoning as 
before, it is possible to show that there does not exists a solution to this 
new system if, and only if, there exist maps di: .Q + R + , k : 52 + R, and a 
nonnegative vector q E lQ; such that 

7t(w;a*\ai)-d,(w)-q,.n(w;a*)=k(w), alliEN, all wEQ (all) 

(a*))> C Bi* 1 ddw). (a.12) 
iEN W’ t R 

We want to show that (a.11) and (a.12) are equivalent to (lo), (11). Sup- 
pose that (a.1 1) and (a.12) hold. Let VW E 52, a(w) = mini, N n(w; a*\a,) - 
k(w). Then, from (a.1 1 ), Vi E N, VW E Q, 

d,(w)=n(w; a*\ai)-$;rt(w; a*\aj)+a(w)-q,.n(w; a*). (a.13) 
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Because di>O, (10) must hold. By summing (a.13) over w  ESZ, we obtain 
CweR di(w)=P(cc)-qi+CweR a( ~2). Algebraic manipulations show that 
(a.12) can be rewritten as (11). 

Suppose now that (10) and (11) hold. Define 

d,(w)=~(w;a*\cl~)-min~(w;~*\or~)+a(w)-qq,.n(w;a*) 
in N 

k(w)yi;n(w;u*\aj)-a(w). 

Observe that (10) implies that cI~(MJ) > 0 for all i and for all w. Then, ViE N, 
VWEQ, ~~(w;u*\cl,)-d,(w)-q,.~$w;u*)=k(w), i.e., (a.11) holds. (11) 
implies (a.12) after some simple algebraic manipulations. This proves 
Lemma 6. 
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