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Allocating Joint Costs by Means of the Nucleolus 1 

By P. Legros 2 

Abstract: This paper presents a sufficient condition for the nucleolus to coincide with the SCRB 
method vector and for nonemptiness of the core. It also studies the reasonableness and the mono- 
tonicity of the nucleolus under this condition. Finally it analyses the class of games satisfying the 
condition and compares it with the classes of convex games, subconvex games and the class Q of 
Driessen and Tijs. 

1 Introduction 

Regulatory authorities such as the Federal Communications Commision or the Ten- 
nessee Valley Authority historically have determined tariffs based on the principle of  
fully distributed costs. This type of  pricing has been analysed in Ransmeier (1942), 
Heaney and Dickinson (1982), Heaney (1979), James and Lee (1971), Young et al. 
(1980) and Braeutigam (1980). 

Shubik (1962) made one of  the first applications of game theory to the study of  
the joint costs allocation problem. Subsequently many authors (Litflechild 1975; 
Loehman and Whinston 1974; Champsaur 1975; Sharkey 1982a) have established the 
methodological similarity between this problem and the problem of  finding a solution 
in an n-person cooperative game. Specifically, consider an enterprise producing a cer- 
tain service for a set of  N markets. Associate with each subset S of  N the cost C(S) of  
producing the service for the ISI markets alone. Faulhaber (1975) shows that if the 
regulator imposes a zero profit constraint, the existence of  subsidy-free prices is equiv- 
alent to the nonemptiness of  the core of  the game (N, 6). Sufficient conditions for the 
existence of  the core can be found in Sharkey and Telser (1978). 

The sufficient condition presented below defines a class of  games with nonempty 
cores for which the Separable Cost Remaining Benefit (SCRB) method coincides with 
the nucleolus of  the cost game. The coincidence of  the SCRB method and the nucleolus 
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has already been observed for a 3-person game in Straffin and Heaney (1981) and for a 
5-person game in Suzuki and Nakayama (1976). Suzuki and Nakayama (1974) also ob- 
tain this technical result in the general case for a weaker condition than is stated here.3 
One of the purpose of the present paper is to show that the stronger condition provides 
an intuitive motivation for behavior which leads to this result. Independently, Driessen 
and Tijs (1983a) prove that the r-value of Tijs (1981) coincides with the nucleolus and 
with the SCRB vector for all games belonging to a certain class. We show that this class 
is disjoint from ours, except for the case of highly symmetrical games. 

The paper is organized as follows. Section 2 presents a condition which defines a 
new class of games and for which the core is nonempty and the SCRB method leads to 
the nucleolus. Section 3 analyses the reasonableness and the monotonicity of the 
nucleolus for this class. Section 4 compares this class with those defined by Shapley 
(1971), Sharkey (1982b) and Driessen and Tijs (1983a). Section 5 presents some final 
comments. 

2 The  SCRB M e t h o d  and the Nucleolus  

Let (N, v) be the saving game associated with the cost allocation problem, The func- 
tion v is defined by, 

v(S) = ~ C(i) - C(S), for all S c N 
iEs 

Note that v is always zero-normalized (v(i) = 0 for all i in N). We require only that v be 
monotonic, 

v(S) >i v(T) ,  for all T C S C N. 

The set of imputations is defined as, 

X = (x  @ ~ n  s.t. x ( N )  = v(N)  and xi >1 O, i = 1, . . . ,  n ) 

where x(S) denotes N x i. 
iEs 

Clearly, every individually rational full cost allocation scheme y (i.e. Yi <~ C(i) and 
y(N)  = C(N))  corresponds to only one vector x in X; precisely, y = -x  + c, where 
c = (C(1), ..., C(n)). 

The SCRB method defines a vector in IR n such that every player i gets his/her 
separable contribution (SCi) and a fraction of the non-separable contribution (NSC). 
Formally, i fx  is this vector, 

Xi = SCi + ai " NSC, i = 1,. . . ,  n 

3 I thank a referee for pointing out this reference to me. 
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where 

~(N)= 1, o~>0,  i= 1, ...,n 

SCi  = v ( N )  - v ( N -  i) ,  i = 1 , . . . ,  n 

N S C  = v ( N )  - S C ( N )  

It is immediate that x is always Pareto optimal, but that x i may be positive or negative 
and that x may not be an element of the core. We now consider the naive case where 
ai = 1In for all i in N and we denote by Y the vector ~ = S C  + NSC/n .  

The excess of a coalition S with respect to (w.r.t.) x is defined by e(S, x )  = v(S)  
- x ( S ) .  If the excesses are arranged in decreasing order, let O(x) be the resulting vector 
in ~ 2 n - a .  An imputation x is preferred to an imputation y whenever 0(x)  is smaller 
than |  w.r.t, the lexicographical ordering on IR 2n-1. The nucleolus is the set of 
points in X which are most preferred in this quasi-ordering on IR n . Schmeidter (1969) 
proves that the nucleolus always exists, is unique, and is an element of every e-core. 
An intuitive interpretation is that the nucleolus minimizes dissatisfaction, with priority 
to coalitions which are most dissatisfied. 

We give the following definition before stating a first result. 

Def in i t ion .  A game is pseudo-convex if S C  i >1 v (S)  - v ( S  - i), for all i in N and all S 
inN. 

Pseudo-convexity requires that the maximum of the separable contribution of a 
player to all coalitions is reached at the highest level of cooperation, i.e.N. Contrary 
to Shapley's notion of convexity, there is no snow ball effect here, but only an incen- 
tive for the players to reach the highest level of cooperation. 

Theorem 1: If v is pseudo-convex and satisfies the condition, 

(PI) n -SC/I>-(n - 1) "NSC 

= SC + N S C / n  is the nucleolus of the game and the core is nonempty. 

Proof." Let (PCG) and (PCGI) denote respectively the class of pseudo-convex games 
and the class of pseudo-convex games which satisfy (PI). Let  S = {i 1 . . . .  , is } be any 
coalition with s members and denote S k the coalition obtained from S by deleting the 
k first players, S k = S - (il . . . . .  i k } with k = 1, . . . ,  s, and let S O = S. If v is in (PCG), 

S C i k > ~ v ( S x _ I ) - v ( S k ) ,  k = 1, ...,s. 

Summing over the elements of S - i s and noting v(i)  = 0 for all i in N, 

s--1 s - - I  

SCik >1 2 (v(Sk_l) - V ( S g ) )  = v(S) .  (11 
k=l  k=l  
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I f  we consider S = N - j ,  it is immediate that (1) implies, 

N S C  < O. (2) 

From (PI) and (2), we have ~//> 0 for all i in N. "Since ~(N) = v ( N )  we have YE X. 
I f s  ~< n - 2, by (1), (2) and (PI), 

e (N  - i, x ~) - e(S, ~ )  = NSC/n  - (v(S)  - SC(S)  - s " NSC/n )  

S--1 

: ~, SCik - v(S)  + SCis + (s + 1)" NSC/n  >10. 
k = l  

(3) 

We note that :~/> 0 for all i in N and (3) are the conditions stated by Suzuki and 
Nakayama (1974). 

For every vector y 4= ~ in X, there will exist an i in N such that e ( N -  i, ~ )  < 
e ( N -  i, y ) ,  which proves that ~ is the nucleolus. By (2) e(S, ~ )  is nonpositive and the 
core is nonempty. Q.E.D. 

In order to interpret this result, we consider, first, games in which the only permissible 
coalitions are those of size 1, n -  1 and n, i.e. pseudo-bargaining games. Davis and 
Maschler (1965) study these games and prove that the kernel consists of a unique point 
(their theorem 7.1), namely the nucleolus. These authors further show that under 
certain conditions the nucleolus is an equity-type vector, i.e. a vector of the form 
w + ( v (N)  - w ( N ) ) / n  where the vector of quotas w solves the system w ( N -  i) = v ( N -  i), 
i = 1, . . . ,  n. 4 It is immediate that wi = ( ~ v ( N - ] )  - (n - I) �9 v ( N -  i))/(n - 1) and 

]~N 
that the equity-type vector is equal to ~. In other words, for games in (PCGI), the 
players behave as if they were playing a pseudo-bargaining game and were using their 
quotas w i as the basis of the negociation. The reason for this behavior can be the fol- 
lowing. 

For pseudo convex games, SCi may be understood as a "utopia" (the term is bor- 
rowed form Driessen and Tijs 1983b): players in N - i  will be better off to exclude i if 
he/she gets more than S Q ;  moreover, SCi is the best a given player i can expect to 
offer to any coalition to enter. Following this interpretation, the difference S C i - Y i  
can be defined as a "utopialoss" that player i suffers w.r.t.y. Suppose now that players 
in N - i, once N -  i is formed, ask i to pay a fee in order to join. If  we rewrite (PI) as, 

sG/(n - 1) >1 ~ (scj -x j ) /n  
]EN 

this condition states that what a player in N -  i can expect to receive from i is at least 
as great as the average utopia loss w.r.t, any imputation. We note that a sufficient con- 

4 This result has been later rediscovered by Owen (1968). 
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dition for this inequality to hold is, 

SCi/(n - 1) >~SC i - x i ,  for all] inN, 

i.e. the utopia loss of every player ] in N -  i is less than what i can be asked to pay to ]. 
Finally it is interesting to note that for games in (PCGI), ~ is just the vector which 

minimizes the distance between the utopia vector and the imputation set, i.e.~solves 
rain ]~ ( S C i - Y i ) 2 .  5 

y E X  i E N  

3 S om e  Proper t ies  o f  the Nucleolus  

Milnor (1952) was the first to introduce the concept of reasonable outcome. A payoff 
vector is reasonable i f x  i <~ b(i) for all i in N, where b(0 = max (v(S)  - v (S  - i)). Wesley 

S C N  
(1971) proves that each point in the kernel, therefore the nucleolus, is reasonable. 

Kikuta (1976) proposes another definition of reasonableness. Whereas Milnor 
bases his argument upon the maximal marginal contribution of a player to a coalition, 
Kikuta defines upper-bounds w.r.t, the average of all the marginal contributions of a 
given player to coalitions of a given size. Formally, an imputation x is reasonable by 
this definition i f x i  <~ b'(i) ,  for all i inN, where 

b'(/)= max ~ ,  i = 1  . . . .  ,k 

f~ = ~ (v(S)  - v (S  - i)), 
S i E S  

S =k 

i= 1 . . . .  ,n,  k = 1, . . . ,n  

Kikuta proves that the nucleolus is reasonable for all 4-person simple games with a 
special property, and for all symmetrical games with nonempty cores. Maschler (1963) 
proves that the nucleolus is reasonable for all games with coalitions of size 1, n - 1 and 
n. For pseudoconvex games b(i) = b'(i), for all i in N. Indeed, if v E (PCG), SCi ~ v(S) 
- v ( S - i )  for all i ~ S  C N a n d  so, 

Y, sc i  = sci  >1 s ~ s  (v(s) - v ( s -  i)). 
S i ~ S  

S =k S l = k  

Consequently, the nucleolus for pseudo-convex games, hence for games in (PCGI), is 
also reasonable by Kikuta's definition. 

Another desirable condition for the nucleolus to satisfy is monotonicity. Let v and 
w be two n-person games such that v(S)  = w ( S )  i fS :~N and w(N) = v(N) + A (A > 0), 
and let ~ be a solution concept which assigns to each n-person game v a unique vector 

5 Necessary and sufficient conditions for this result are given in Legros. 
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~v in I1 n . Then q~ is monotonic, by Megiddo's (1974) definition if q~w >1 ~sv for all i in 
N. The nucleolus is not in general monotonic (Megiddo 1974). For games in (PCGI), 
however, the nucleolus is monotonic: i f  nu v and nu TM are the nucleolus of the games v 
and w defined above, then nu TM = nu~. + A/n for all i in N. 

Recently, Young (1982) has introduced the concept of strong monotonicity of a 
solution. Let vi(S) be the contribution of player i to coalition S, 

I v ( S ) - v ( S - i )  i f i E S  

vi(S) = [ v(S U i) - v(S) if i ~ S. 

Consider two games v and w such that vi(S) <<. wi(S) for all S in N. Then a solution �9 is 
strongly monotonic if ~w I> ~ , .  The following example emphasizes that even in 
(PCGI), the nucleolus may not be strongly monotonic. 

Let I NI = 5, and two games v and w such that, 

v(i) =0, i = 1 , . . . , 5 ;  v(S) =25 iflSI =2;  v(S) =50 iflSI =3;  

v ( N - 5 ) = 7 5 ;  v ( N - i ) = 7 4  ifi:/=5; v(N) = 100. 

w(i )=0,  i = l  . . . .  ,5;  w ( 1 5 ) = 2 5 + e ;  w(25 )=w(35 )=w(45 )=25;  

w(12) = w(13) = w(14) = w(23) = w(24) = w(34) = 24.5; w(S) = 49.5 if lSI = 3; 

w ( N - 5 ) = 7 5 ;  w ( N - i ) = 7 3 . 5 i f i r  w (N )=1 0 0 +e .  

v and w are elements of (PCGI) if e E [0, 1/11], and the nucleolus of these games are 
nu TM = (203 + 0.2e, 20.3 + 0.2e, 20.3 + 0.2e, 20.3 + 0.2e, 18.8 + 0.2e) and nu v = 
(20.2, 20.2, 20.2, 20.2, 19.2). So nu~ < nuVs for e E [0,1/11] while wS(S) > vS(S) for 
all S C N, and the nucleolus is not strongly monotonic. 

In this example, the contributions of player 5 to all coalitions are constant - up 
to e - in both games v and w, while the relative values of the coalitions are quite dif- 
ferent in both games. This remark helps to understand why the nucleolus is not strong- 
ly monotonic and why imposing strong monotonicity may not be natural. A quite 
simple example may clarify this point. 

Let I NI = 3 and two games v and w such that 6 : 

V q ) = O , i = l , 2 , 3 ;  v(S) =1 iflSI =2;  v(N) =1 

w(i)=0,  i = 1 , 2 , 3 ;  w(12)=w(13)=2 ;  w(23)=200;  w(N)=200.  

Here vi(S) <~ wi(S) for all i i nN and all coalitions S. We have, nu v = (1/3, 1/3, 1/3) and 
nu w = (0, 100, 100). Clearly player 1 would prefer to play v rather than w, even if 
his/her contributions are larger in w. Imposing strong monotonicity, i.e. a larger payoff 
to 1 in w than in v, would then hide the fact that player 1 is much weaker in w than 
in v. 

6 Neither v nor w is in (PCGI) but this is not a problem since we are only concerned with strong 
monotonieity. 
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4 S om e  Compar i sons  

Definition 2 (Shapley 1971): A game is convex if its characteristic function satisfies 
v(S U T) + v(S 0 T) >~ v(S) + v(T) for all S, T C N. 

Definition 3 (Sharkey 1982b): Let B o = ~b and B = (B 1 , . . . ,B k } be an arbitrary parti- 
i--1 

tion of N. Let Q = (Q1,-.- ,  Qk ) be a collection of coalitions such that Qi c U B] 
]=o 

and B i u Qi =~N, i = 1 . . . . .  k. The game (iV, v) is subconvex if it is true that for all 
such collections B and Q, 

k 
~, (v(Bi U Qi) - v(Qi)) <<- v(N). 

i=k 

Sharkey (1982b) interprets subconvexity as an increasing return to coalition formation 
on average and proves that all subconvex games have large cores. Let us denote by 
(CG) and (SCG) the classes of convex and subconvex games. 

Theorem 2." (CG) C (SCG) C (PCG). 

Proof." Let v E (CG) and consider a pair (B, Q) of collections of coalitions which satisfy 
the conditions of Definition 3. We show by induction that, 

(v(B i U Qi) - v(Qi)) <~ v Bi �9 (4) 
i=1 i = 

(4) is obviously true for t = 1. At t + 1, we have, 

t + l  t 

v(B i U Qi) = ~-, v(Bi u Qi) + v(Bt+l u Qt+l).  
i=1 i=1 

By convexity of v, 

V B i + v ( B t +  1 U Q t +  1 ) < ~ v  B i U ( B t +  1 u Q t + l  ) + 
i=l i 

+ V B i N (B t+  1 U Qt+l  . 
i= 

(5) 

t 

Since Qt+l c U B i by Definition 3, (4) and (5) imply, 
i=1 

t + l  [ t + l  ~ t + l  
z u << r  Be) + Z v(Q,). 

i=I i i=l 
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klBi )  So, (4) is true for all t = 1 . . . .  , k, and because B is a partition of  N, v ? = v(N), 
which proves that v E (SCG). i 

Consider now the (2 n - 1) partitions B s = {S, N -  S )  where S C N. Let Qs = 
{r S - i )  where i E S. B s and Qs clearly satisfy Definition 3. So, if v E (SCG), 

v(S) + v ( N -  i) - v(S - i) <. v (N) .  (6) 

(6) is true for all S C N, and so v E (PCG). Q.E.D. 

Corollary: (CG) = (SCG) = (PCG) if JNI = 3. 

Proof." Note that (CG) = (PCG) if INI = 3 and use Theorem 2. Q.E.D. 

We show now that (CG) and (SCG) are distinct from (PCGI) with a sequence of ex- 
amples. 

Claim 1: (CG) - (PCGI) :~ ~, 
Consider the 4-person game, v(/) = 0, i = 1 ,2 ,3 ,4 ;  v(S) = 5 if [ S[ = 2; v(123) = 16; 

v(124) = 12; v(134) = 10; v(234) = 14; v(N) = 26. 
This game is convex but SC4 = 10 < 39/2 = - 3 / 4  - NSC and so v q~ (PCGI). 

Claim 2: (CG) n (PCGI) 4= ~. 
Let INI = 4  and v(/) = 0 , i  = 1 , 2 , 3 , 4 ; v ( S ) = 2 / 5 i f l S l = 2 ; v ( S )  = 1 i f lS I  = 3  and 

v(N) = 8/5. 
This game is convex and (PI) is satisfied: for all i, SCi = 3/5 = - 3 / 4  "NSC. 

Claim 3: (PCGI) - (SCG) :~ ~. 
Let I'N[ = 5 and v(i) = 0 for all i in N; v(S) = 25 if iS] = 2; v(123) = v(124) = 25; 

v ( S ) = 5 0  if I S I = 3  and Sq~ {123, 124}; v ( N - 5 ) = 7 5 ;  v ( N - / )  = 7 4  if i E N - 5 ;  
v(N) = 100. 

SCs = 25 and SC/= 26 if i v ~ 5. So, - 4 / 5  .NSC = 23.2 < S Q  for all i in N, and v 
satisfies (PI). I t  is routine to check that  v is pseudo-convex, so v E (PCGI). Consider 
now the families B = {1 ,23 ,  4, 5 ) and Q = {r 1, 12, 1 }; B and Q satisfy the condi- 
tions of  Definition 3, but  we have, 

4 
(v(B i U Qi) - v(Qi)) = v(123) + v(124) + v(15) - v(12) = 102 > v(N) 

i=1 

and v ~ (SCG) which proves the claim. 

We consider now the class Q proposed by Driessen and Tijs (1983a). This class is 
defined as follows, 

= (v  E Q s.t. SC(N) - v(N) <~ SC(S) - v(S), for all S c N )  



Allocating Joint Costs by Means of the Nucleolus 117 

where 

Q = {vs . t .  a <.SC, a(N)  <~ v(N)  <.SC(N) ) 

a i = max (v(S) - SC(S  - i)), i = 1 . . . .  , n. 
S I i E S  

Theorems 4.1 and 4.7 of Driessen and Tijs (1983a) establish that the nucleolus ofaU 
games in Q is equal to the vector S C  + NSC/n.  The following theorem and remark have 
been obtained by Driessen and Tijs and the author (private communication). 

s - 1  
Theorem 3: Q. f3 (PCG) = Q f3 (PCGI) = EG = {v  s.t. v(S)  = �9 v ( N ) ,  S C N }. 

n - 1  

Proof." If v E (PCG), SCi >t v(S)  - v (S  - i) for all i E S. This inequality may be rewrit- 
ten as SC(S) - v(S)  >~ SC(S - i) - v (S  - i). Since this is true for every coalition, we de- 
duce that if v E (PCG), 

SC(S) - v (S)  >1 S C(T )  - v ( r )  for all T C S C N. (7) 

Now, if v E 0 

SC(N)  - v (N)  <<. S C ( T )  - v ( r )  for all T C N. (8) 

Consequently, (7) and (8) imply, if v E (PCG) n 0 

S C ( T ) - v ( T )  = S C ( N ) - v ( N )  for all TCN. (9) 

(9) defines the class of games EG which was first introduced by Driessen and Tijs. 
Hereafter we characterize these games. Let T = {] }; then by (9) SCj = SC(N)  - v(N), 
for all ] in N and so SC/= SCtc for all f 4= k, i.e. v ( N - j )  = v ( N -  k) = z for all ] 4= k. 

g / - -z ;  
It follows that v (N)  - z = ( n  - 1)v(N) - nz and z = �9 v (N) .  If we insert this value 

s--l" n - I  
in (9), we get v(S)=-s v (N) .  So, Qf~ (PCG)CEG. Finally for v E E G ,  it is im- 

mediate that v E Q n (PCG), and so Q n (PCG) = EG. If v E E G ,  S Q  = v (N) / (n  - 1) 
1 - n  

> v (N) /n  = - - .  N S C  and v satisfies (PI). Q.E.D. 
n 

Remark." It is easy to show that as n becomes large enough, (PCGI) is equal to EG. In- 
deed, if v E (PCGI), by (7) and (PI), 

n - 1  

n 
(SC(N)  - v (N) )  <~ SC i <~ SC(N)  - v (N) .  

So, if n becomes large, SC/ is equal to S C ( N ) -  v (N) ,  and from (7) we deduce that 
SC(S)  - v (S)  is also equal to S C(N)  - v (N) ,  which proves that for large n, each game in 
(PCGI) is in EG. 
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5 C o n c l u d i n g  R e m a r k s  

We show in this paper that the SCRB method can be supported by a normative concept 
whenever the cost function defines a saving game which is in (PCGI). Moreover, we 
propose in Section 2 an interpretation of the result in terms of  utopia and entrance 
fees. It is interesting to make the analogy between this interpretation and Moulin's 
ALDB (Auctioning the leadership with differentiated bids) mechanism. 

In the ALDB procedure, the players act noncooperatively and first choose as the 
leader the player who has the lowest bid (i.e. the amount of  money a player wants to 
get from each other player to become the leader). Once the leader proposes a decision 
(i.e. chooses a given state among the set of  possible alternatives together with a vector 
of  transfers), the players vote unanimously to accept the decision. If  the decision is 
rejected, the leader is eliminated from the decision process and another leader is chosen. 
This procedure is repeated until a decision is unanimously approved. Moulin (1981) 
shows t h a t  if the players behave in a sophisticated way, this mechanism implements 
the SCRB vector and the optimal bid for each player is exactly -NSC/n,  where the 
function v is defined by v(S)= max E ui(a), all S CN, with ui being the utility 

a~A i~S 
function and A being the set of  possible states. 
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